Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress.
نویسندگان
چکیده
Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring.
منابع مشابه
Tight junction protein gene expression patterns and changes in transcript abundance during development of model fish gill epithelia.
In vertebrates, tight junction (TJ) proteins play an important role in epithelium formation and development, the maintenance of tissue integrity and regulation of TJ permeability. In this study, primary cultured model gill epithelia composed of pavement cells (PVCs) were used to examine TJ protein transcript abundance during the development of epithelium confluence and epithelium resistive prop...
متن کاملFunctional characterization and localization of a gill-specific claudin isoform in Atlantic salmon.
Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon (Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin is associated with remodeling of the epithelium during salinity change. This study investigated local...
متن کاملA role for tricellulin in the regulation of gill epithelium permeability.
The apical-most region of cell-to-cell contact in a vertebrate epithelium is the tight junction (TJ) complex. It is composed of bicellular TJs (bTJs) that bridge two adjacent epithelial cells and tricellular TJs (tTJs) that are points of contact between three adjoining epithelial cells. Tricellulin (TRIC) is a transmembrane TJ protein of vertebrates that is found in the tTJ complex. Full-length...
متن کاملMyosin light chain phosphorylation regulates barrier function by remodeling tight junction structure.
Epithelial tight junctions form a barrier against passive paracellular flux. This barrier is regulated by complex physiologic and pathophysiologic signals that acutely fine-tune tight junction permeability. Although actomyosin contraction and myosin light chain phosphorylation are clearly involved in some forms of tight junction regulation, the contributions of other signaling events and the ro...
متن کاملBranchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification.
In euryhaline teleosts, permeability changes in gill epithelia are essential during acclimation to changed salinity. This study examined expression patterns of branchial tight junction proteins called claudins, which are important determinants of ion selectivity and general permeability in epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 9 شماره
صفحات -
تاریخ انتشار 2011